ASSESSING THE FEASIBILITY OF USING SUPER HIGH-RESOLUTION FOREST ENVIRONMENT MAPS IN HARVESTING SIMULATORS FOR PRECISION HARVESTING APPLICATIONS

Jori Uusitalo, Omid Abdi, Veli-Pekka Kivinen, Ville Laamanen & Janne Ruokonen

LUOMUHAKKUU-PROJECT

 The work is part of the Luomuhakkuuproject that is funded by the NextGenerationEU -funds

Euroopan unionin rahoittama

NextGenerationEU

HARVESTER SIMULATORS TODAY

- Harvester simulators have a wellestablished role in teaching trainees different working methods
- The modern simulators encompass high realism in visualization of both harvester components, soil and photorealistic trees.
- The simulators are equipped with exactly same seat, joysticks and control systems than in real machines.
- High level of augmentation is complemented with multiple screens or VR-glasses.

Photo: Ponsse

HARVESTER SIMULATORS TODAY

- Today, terrain topography and location of trees can be customized with separate editors where the location of trees are modified individually by hand
- It means that trainees will learn, how to use machine but teaching of silviculture has to be carried out by other means

Photo: Ponsse

SCOPE OF THE PRESENTATION

- In this presentation, we will
 - Demonstrate how we managed bring a real forest structure – with real world topography and exact locations of the trees – to the Ponsse simulator
 - Discuss the benefits of bringing real forest structure to the simulator world

Photo: Jori Uusitalo

SINGLE TREE DETECTION

In ongoing LUOMUHAKKUU-project 11 stands (including between-stand variation in tree species proportion, maturity and structure) were inventoried with a drone

- LiDAR data with a density of 50-100 points/m²
- RGB/multispectral images with the resolution of 30-40 Mpx
- The drone inventories were complemented with field inventories
 - Roughly 1 circle plot per hectare
 - Exact location of trees defined with GNSS/RTK system given accuracy of roughly 50cm
 - Tree species and dbh (+ some height samples)

DEEP-LEARNING BASED SINGLE TREE PREDICTION

- Detection of individual trees
 - Bounding Boxes delineated and trees "labelled"
 - DL algorithm that predicts trees with their exact locations, tree species and heights

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of agriculture and forestry

PROCEDURE

Terrain topography and tree lists to Creanex Oy

Interpretation and finetuning by Creanex Oy

A new software and data assembled to the TREDU forest school Ponsse simulator

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

8

 Plan and harvest of logging trail network in this steep terrain in a way that minimize soil erosion risks

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

q

 A challenging form of terrain – how to harvest it in a clever way?

- Treatment of the corner
 - Which trees forms the retention tree group
 - How to deal with risks of wind damages?

 Clear uneven-aged structure – how to select the removed trees

- A silvicultural patch that clearly differs to adjacent forest structure
- How to manage the area in order to follow Closer-to-Nature Forest Management "philosophy"

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Y.

TESTING OF NEW MAP-LAYERS

- Full environment with joysticks and assisting visualizations
- Which type of visualizations are most effective
- As an example the benefits of the OLT-layer.

